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1 Introduction

Over the past thirteen years there has been considerable research on efficient model checking
algorithms for branching-time temporal logics like CTL (See [5] for a survey). Verification
tools based on these algorithms have discovered non-trivial design errors in sequential circuits
and protocols [101 and are now beginning to be used in industry. There has been relatively

little research, however, on efficient model checking algorithms for linear-temporal logic

(LTL), and practical verification tools are virtually non-existant. In fact, the question of
whether it is possible to develop such tools has been argued for many years. Sistla and Clarke
[17] showed in 1982 that the model checking problem for LTL was, in general, PSPACE
complete. Later, Pnueli and Lichtenstein [14] gave an LTL model checking algorithm that
was exponential in the size of the formula, but linear in the size of the model. Based
on this result, they argued that the high complexity of LTL model checking might still be
acceptable for short formulas. Vardi and Wolper [18] obtained a different algorithm based on
w-automata with roughly the same complexity. Unfortunately, the LTL algorithms appeared
significantly more difficult to implement. Because of this, very few LTL model checkers were
actually constructed. To the best of our knowledge, no experiments were made to determine
how the CTL and LTL model checking algorithms actually compared in practice.

In this paper we show how LTL model checking can be red- :ed to CTL model checking
with fairness constraints. We also describe how to construct a symbolic LTL model checker
that appears to be quite efficient in practice. In particular, we show how the SMV model
checking system developed by McMillan as part of his Ph.D. thesis [16] can be extended to
permit LTL specifications. We have developed a translator T that takes an LTL formula f
and constructs an SMV program T(f) to build the tableau for f. The tableau construc.tion
that we use is similar to the one described in [4]. To check that f holds for some SMV
program M, we combine the text of T = T(-'f) with the text of M to obtain a new SMV
program P = P(T, M). We add CTL fairness constraints to P in order to make sure that
eventualities of the form a U b are actually fulfilled (i.e. to eliminate those paths along which
a U b and a hold continuously, but b never holds). By checking an appropriate CTL formula
on P we can find the set Vf of all of those states s such that f holds along every path that
begins at s. The projection of V1 to the state variables of M gives the set of states where
the formula f holds.

Note that our approach makes it unnecessary to modify SMV (or even understand how
SMV is actually implemented). We have evaluated the approach on several standard SMV
programs (including Martin's distributed mutual exclusion circuit (151 and the synchronous
arbiter described in McMillan's thesis [16]). In order to make sure that the experiments were
unbiased, we deliberately chose specifications which could be expressed in both CTL and
LTL. The results that we obtained were quite surprising. For the examples we considered,
the LTL model checker required at most twice as much time and space as the CTL model
checker. Although additional examples still need to be tried, it appears that efficient LTL
model checking is possible when the specifications are not excessively complicated. In the
full paper we will describe how the same basic approach can be used to extend SMV for
testing inclusion between various types of w-automata.
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2 Binary Decision Diagrams

Ordered binary decision diagrams (OBDDs) are a canonical form representation for boolean
formulas [3]. They are often substantially more compact than traditional normal forms such
as conjunctive normal form or disjunctive normal form, and they can be manipulated very
efficiently. An OBDD is similar to a binary decision tree, but has the following properties.

"* Its structure is a directed acyclic graph rather than a tree.

"* A total order is placed on the occurrence of variables as the graph is traversed from
root to leaf.

"* No two subgraphs in the graph represents the same function.

Bryant showed that given a variable ordering, the OBDD representation for a boolean for-
mula is unique.

We can implement various important logical operations using OBDDs. The function
that restricts some argument xi of the boolean function f to a constant value b, denoted by
f 1x.-b, can be performed in time which is linear in the size of the original binary decision
diagram [3]. The restriction algorithm allows us to compute the OBDD for the formula
3xf as f Ix-o +f I..,1. All 16 two-argument logical operations can also be implemented
efficiently on boolean functions that are represented as OBDDs. The complexity of these
operations is linear in the size of the argument OBDDs [3]. Furthermore equivalence checking
of two boolean functions can be done in constant time, by using a hash table properly[2].

OBDDs are extremely useful for obtaining concise representations of relations over finite
domains [4, 161. If R is n-ary relation over {0, 1} then R can be represented by the OBDD
for its characteristic function

fR(x,,... ,x) = 1 iff R(x,,. Xn).

Otherwise, let R be an n-ary relation over the finite domain D. Using an appropriate binary
encoding of D, we can represent R by an OBDD.

3 Computation Tree Logics

We begin by describing the temporal logic CTL* [8, 9, 12], which can express both linear-
time and branching-time properties. In this logic, a path quantifier, either A ("for all
computation paths") or E ("for some computation paths") can prefix an assertion composed
of arbitrary combinations of the usual linear-time operators G ("aiways"), F ("sometimes"),
X ("nexttime"), and U ("until"). Both Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL) are included in CTL* .

There are two types of formulas in CTL* : state formulas (which are true in a specific
state) and path formulas (which are true along a specific path). Let AP be the set of atomic
proposition names. The syntax of state formulas is given by the following rules:

* If p E AP, then p is a state formula.
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e If f and g are state formulas, then --f and f V g are stace formulas.

e If f is a path formula, then E(f) is a state formula.

Two additional rules are needed to specify the syntax of path formulas:

* If f is a state formula, then f is also a path formula.

* If f and g are path formulas, then --f, f V g, X f, and f U g are path formulas.

CTL* is the set of state formulas generated by the above rules.
We define the semantics of CTL* with respect to a Kripke structure M = (S, R, L),

where S is the set of states; R C S x S is the transition relation, which must be total (i.e..
for all states s E S there exists a state s' E S such that (s, s') E R); and L : S -+ P(AP) is
a function that labels each state with a set of atomic propositions true in that state. In this
paper, we assume that all Kripke structures are finite.

A path in M is an infinite sequence of states, 7r = so, s,.., such that for every i > 0,
(si,si+i) E R. We use .ir to denote the suffix of ir starting at si. If f is a state formula.
the notation M, s ý= f means that f holds at state s in the Kripke structure M. Similarly,
if f is a path formula, M, "r H f means that f holds along path 7r in Kripke structure M.
When the Kripke structure M is clear from context, we will usually omit it. The relation ý
is defined inductively as follows (assuming that fi and f2 are state formulas and g, and g2
are path formulas):

l. s ý= p € p E L(s). Accesion For
2 . s H - fsl 5 ]f . N T IS C R A & I
3. s f, V f 2  4* s [ f, or s # f 2. DTIC TAB
4. s # E(gj) -t there exists a path 7r starting with s such that ir H g9. Unannounced L i
5. 7r • f, ¢ s is the first state of ir and s = fi. Justificition #VIP,
6. r -igl 7 gl.
7. Tr 1g9Vg 2  7rir g, or7rw g 2. By ..... ..............................
8. 7 Xg1  #> r, H g1 . Distribution /
9. 7r g1 U g 4 -- there exists a k > 0 such that 7rk ý= 92 and for all Availability Codes

0<:ý j < k, 7r' ý= Yi. Avail a:'.dlIor
O~j k, rJ•g, I i~vila:•/°Dist Special[

The following abbreviations are used in writing CTL* formulas:

Sf A g -(-f V -g) 9 Ff atrue Uf ~i*A(f) =-• E(-f/) 0 G f =_ - F-•f--

CTL [1, 8] is a restricted subset of CTL* that permits only branching-time operators-
each of the iinear-time operators G, F, X, and U must be immediately preceded by a path
quantifier. More precisely, CTL is the subset of CTL* that is obtained if the following two
rules are used to specify the syntax of path formulas.

"* If f and g are state formulas, then X f and f U g are path formulas.

"* If f is a path formula, then so is -if.
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Linear temporal logic (LTL), on the other hand, will consist of formulas that have the
form A f where f is a path formula in which the only state subformulas permitted are atomic
propositions. More precisely, a path formula is either:

e an atomic proposition p E AP.

* If f and g are path formulas, then --f, f V g, X f, and f U g are path formulas.

There are eight basic CTL operators: AX, EX, AG, EG, AF, EF, AU and EU. Each
of the eight operators can be expressed in terms of three operators EX, EG, and EU.

4 CTL Model Checking

CTL Model checking is the problem of finding the set of states in a state transition graph
where a given CTL formula is true. One approach for solving this problem is a symbolic
model checking using an OBDD to represent the transition relation of the graph. Assume
that the transition relation is given as a boolean formula R(5, Ey') in terms of current state
variables D = (vj,. . , v,,) and next state variables D' = (v.,..., v'L). The algorithm takes
a CTL formula f, and the OBDD that represents R(i3, a'). For each subformula g, the
algorithm computes the states that satisfy g in a bottom-up manner. This step is performed
by OBDD operations. The algorithm returns an OBDD that represents exactly those states
of the system that satisfy the formula f.

Fairness constraints were introduced for checking the correctness of CTL formulas along
fair computation paths. A fairness constraint can be an arbitrary set of states, usually
described by a formula of the logic. A path is said to be fair with respect to a set of fairness
constraints if each constraint holds infinitely often along the path. The path quantifiers
in CTL formulas are then restricted to fair paths. The CTL model checking under given
fairness constraints can also be performed using OBDD operations. As will be shown in the
next section, LTL model checking can be reduced to CTL model checking under fairness
constraints.

5 LTL Model Checking

In this section we consider the model checking problem for linear temporal logic. Let A f
be a linear temporal logic formula. Thus, f is a restricted path formula in which the only
state subformulas are atomic propositions. We wish to determine all of those states s E S
such th-t M, s ý= A f. By definition M, s H A f iff M, s H - E -f. Consequently, it is
sufficient to be able to check the truth of formulas of the form E f where f is a restricted
path formula. If the Kripke structure is represented explicitly as a state transition graph.
this problem is known to be PSPACE-complete [171 in general.

Lichtenstein and Pnueli [14] developed an algorithm for the problem that was linear in the
size of the model M and exponential in the length of the formula f. Although their algorithm
was linear in the size of the model, it was still impractical for large examples because of the
state explosion problem. As in the case of CTL model checking, representing the transition
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relation as an OBDD enables the procedure to be applied to much larger examples. The
exponential complexity of their algorithm in terms of formula length is caused by a tableau
construction which may require exponential space in the size of the formula.

Burch et. al developed a model checking algorithm for constructing the tableau implicitly
[4]. The implicit tableau construction leads to an additional reduction in space and time.
We begin with an informal description of the model checking algorithm. Given a formula
E f and a Kripke structure M, we construct a special Kripke structure T called the tableau
for the path formula f. This structure includes every path that satisfies f. By composing T
with M, we find the set of paths that appear in both T and M. A state in M will satisfy E f
if and only if it is the start of a path in the composition that satisfies f. The CTL model
checking procedure described in Section 4 is used to find these states.

We now describe the construction of the tableau T in detail. Let APf be the set of atomic
propositions in f. The tableau associated with f is a structure T = (ST, RT, LT) with APf
as its set of atomic propositions. Each state in the tableau is a set of elementary formulas
obtained from f. The set of elementary subformulas of f is denoted by el(f) and is defined
recursively as follows:

* el(p) = {p} ifp E AP.

e el(-g) = el(g).

"* el(g V h) = el(g) U el(h).

"• el(Xg) = {xg} U el(g).

"* el(g U h) = {X(g U h)1 U el(g) U el(h).

Thus, the set of states ST of the tableau is P(el(f)). The labeling function LT is defined so
that each state is labeled by the set of atomic propositions contained in the state.

In order to construct the transition relation RT, we need an additional function sat that
associates with each subformula g of f a set of states in ST. Intuitively, sat(g) will be the
set of states that satisfy g.

9 sat(g) = {fo I g E a} where g E el(f).

* sat(-,g) = {o o, ý sat(g)}.

* sat(g V h) = sat(g) U sat(h).

* sat(g U h) = sat(h) U (sat(g) n sat(X(g U h))).

We want the transition relation to have the property that each elementary formula in
a state is true in that state. Clearly, if Xg is in some state o, then all the successors of oa
should satisfy g. Furthermore, since we are dealing with LTL formulas, if Xg is not in a.
then a should satisfy --Xg. Hence, no successor of a should satisfy g. The obvious definition
for RT is

A a E sat(X'g) 0 a' E sat(g).
XgEei(f)'
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Figure 1: Tableau for a U b

Figure 1 gives the tableau for the formula g = a U b. To reduce the number of edges, we
connect two states a and a' with a bidirectional arrow if there is an edge from 0 to a' and
also from or to a. Each subset of el(g) is a state of T. sat(Xg) = {1,2,3,5} since each
of these states contains the formula Xg. sat(g) = {1,2,3,4,6} since each of these states
either contains b or contains a and Xg. There is a transition from each state in sat(Xg) to
each state in sat(g) and from each state in the complement of sat(Xg) to each state in the
complement of sat(g).

Unfortunately, the definition of RT does not guarantee that eventuality properties are
fulfilled. We can see this behavior in Figure 1. Although state 3 belongs to sat(g), the path
that loops forever in state 3 does not satisfy the formula g since b never holds on that path.
Consequently, an additional condition is necessary in order to identify those paths along
which f holds. A path 7r that starts from a state a E sat(f) will satisfy f if and only if

e For every subformula g U h of f and for every state o on ir, if o E sat(g U h) then
either o E sat(h) or there is a later state r on x" such that r E sat(h).

In order to state the key property of the tableau construction, we must introduce some
new notation. Let 7r = so, s 1,... be a path in a Kripke structure M, then label(7r) =
L(so), L(si), ... Let I = 10, 11,... be a sequence of subsets of some set E and let V' C E.

The restriction of 1 to E', denoted by 1 jr', is the sequence 1', l,.., where l = li n E' for
every i > 0. Tl. e following theorem makes precise the intuitive claim that T includes every
path which satisfies f.

Theorem 1 Let T be the tableau for the path formula f. Then, for every Kripke structure
M and every path r' of M, if M, 7r' • f then there is a path 7r in T that starts in a state in
sat(f), such that label(ir') IAP, = label(r).

We prove this theorem in the Appendix.
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Figure 2: Kripke Structure M

Next, we want to compute the product P = (S, R, L) of the tableau T = (ST, RT, LT)
and the Kripke structure M = (SM, RM, LM).

" S = {(oa,o ) 1 0 E ST,a' E SM and LM(a') nAP1 = LT(a)}.

"* R((or, a'), (-r, r')) iff RT(a, r) and RM(a', r').

"* L((a,a')) = LT(0).

P contains exactly the sequences ir" for which there are paths 7r in T and 7r' in M such that
label(7r") = label(7r) = label(r') JAP 1 . We extend the function sat to be defined over the set
of states of the product P by (a, a') E sat(g) if and only if a E sat(g).

We next apply CTL model checking and find the set of all states V in P, V C sat(f),
that satisfy EG true with the fairness constraints

{sat(-(g U h) V h) I g U h occurs in f}. (1)

Each of the states in V is in sat(f). Moreover, it is the start of an infinite path that satisfies
all of the fairness constraints. These paths have the property that no subformula g U h
holds almost always on the path while h remains false. The correctness of our construction
is summarized by the following theorem.

Theorem 2 M,a' 1= E f if and only if there is a state a in T such that (a,a') E sat(f) and
P, (oa, a') • EG True under fairness constraints {sat(-'(g U h) V h) I g U h occurs in f }.

The proof of this theorem is also given in the Appendix.
To illustrate this construction, we check the formula g = a U b on the Kripke structure M

in Figure 2. The tableau T for this formula is given in Figure 1. If we compute the product P
as described above, we obtain the Kripke structure shown in Figure 3. We use the CTL model
checking algorithm to find the set V of states in sat(g) that satisfy the formula EG true
with the fairness constraint sat(-'(a U b) V b). It is easy to see that the fairness constraint
corresponds to the following set of states {(2, 4'), (5, 3'), (7, 1'), (6, 2'), (1, 2')}. Thus, every
state in Figure 3 satisfies EGtrue. However, only (2,4'), (3,1'), (1,2') are (6,2') are in
sat(g), so the states 1', 2', and 4' of M satisfy E g = E[a U b].

We now describe how the above procedure can be implemented using OBDDs. We
assume that the transition relation for M is represented by an OBDD as in the previous
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Xb l

Figure 3: The product P of the structure M and the tableau T

section. In order to represent the transition relation for T in terms of OBDDs, we associate
with each elementary formula g a state variable v.. We describe the transition relation RT
as a boolean formula in terms of two copies V and b' of the state variables. The boolean
formula is converted to an OBDD to obtain a concise representation of the tableau. When
the composition P is constructed, it is convenient to separate out the state variables that
appear in APf. The symbol p will be used to denote a boolean vector that assigns truth
values to these state variables. Thus, each state in ST will be represented by a pair (P, F).
where f is a boolean vector that assigns values to the state variables that appear in the
tableau but not in APf. A state in SM will be denoted by a pair (P, q) where q is a boolean
vector that assigns values to the state variables of M which are not mentioned in f. Thus.
the transition relation Rp for the product of the two Kripke structures will be given by

Rp(p, q, r, p l), q, = RT(i, f, P', F') A RM((p, q, P', 4').

We use the symbolic model checking algorithm that handles fairness constraints to find the
set of states V that satisfy EG true with the fairness constraints given in (1). The states in
V are represented by boolean vectors of the form (p, q, F). Thus, a state (fi. 4) in M satisfies
E f if and only if there exists f such that (P, 4, ;) E V and (P, f) E sat(f).

6 LTL Model Checking Using the SMV Model Checker

As stated in Section 5, LTL model checking can be reduced to CTL model checking under
fairness constraints. If the tableau and the fairness constraints for a given LTL formula are
represented implicitly as boolean formulas, we can perform symbolic LTL model checking
using an existing symbolic model checker for CTL. We have developed a translator that
enables the SMV model checker to handle LTL formulas. For a given LTL formula, the
translator generates an SMV program for the corresponding tableau and fairness constraints.
We can perform symbolic LTL model checking using the resulting SMV program. In this
section, we describe how the translator works.

We begin with a brief description of the SMV model checker. SMV is a tool for checking
that finite-state systems satisfy specifications given in CTL. It uses the OBDD-based sym-
bolic model checking algorithm in Section 4. The language component of SMV is used to
describe complex finite-state systems. Figure 4 shows an SMV program for the Kripke struc-
ture in Figure 2 and an specification A(a U b). This example illustrates the basic features



-- Kripke structure

MODULE

I MODULE main -- simple program

2 VAR MODULE

3 a: boolean;
4 b: boolean;

5 TRANS ( a & b) -> next(!(a & Wb)) MODULE main
6 TRANS ( a & b) -> next(a & !b)
7 TRANS (Oa & b) -) next(!a & b)
8 TRANS (!a & Wb) -> next(!a & b)

9 SPEC A[a U b]
-- LTL formula

Figure 4: Simple SMV program SPEC A f

Figure 5: An SMV program

of SMV that are needed to explain the translation procedure. The syntax and semantics of
the complete language are given in McMillan's thesis [16].

SMV users can decompose the description of a complex finite-state system into modules.
Module definitions begin with the keyword MODULE. The module main is the top-level module.
(The example in Figure 4 contains a single module; however, our translator can handle
programs with multiple modules.) Variables are declared using the keyword VAR. In the
example, a and b are boolean variables (line 3-4). The TRANS statements are used to define
transitions of the model (lines 5-8). In the TRANS statements, next (g) is obtained from
g by replacing each state variable v in g by the correspon ling next state variable v'. For
example, next(a & !b) means 'A -b' where a' are b' are the next state variables for a and
b, respectively. Thus, each TRANS statement determines a propositional formula that relates
the original state variables and the next state variables. The transition relation for an SMV
program is obtained by taking the conjunction of these formulas. CTL formulas are declared
as specifications using the keyword SPEC (line 9).

Next, we describe the translation algorithm. Suppose that we have an SMV program with
an LTL formula A f, instead of a CTL formula, as its specification. As stated in Section 5, it
is sufficient to handle a formula E -"f. The translator replaces A f with an SMV description
of the tableau and the fairness constraints for -f. The translation of the SMV program
in Figure 5 is shown in Figure 6. The translation follows the general procedure outlined in
Section 5:

1. Associate a state variable with each elementary formula of --f.
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2. Represent the transition relation of the tableau for -'f as ; boolean formula in terms
of the state variables.

3. Represent fairness constraints as boolean formulas in terms of the state variables.

4. Generate a CTL specification.

In the first step, the formula f is negated and expanded to a formula in which the only
operators are V, -,, X, U. The parse tree of --f is traversed to find its elementary formulas.
If a node associated with formula Xg (or g U h) is visited, then then the corresponding
elementary formula Xg (or X(g U h)) is stored in the list el-list. The translator declares
a new variable ELY9 for each formula Xg in the list el-list. Since atomic propositions are
already declared in the original SMV program, they are not declared again.

In order to generate descriptions for the transition relation and the fairness constraints,
we have to construct the characteristic function Sh of sat(h) for each subformula or elemen-
tary formula h in -if. The translator builds these functions using a DEFINE statement'. The
translator traverses the parse tree of --f, and ge ,erates the appropriate SMV statements at
each node.

Sh:= p; if p is an atomic proposition.
Sh : = ELh; if h is elementary formula X g in el-fist.
Sh,:= !5g; ifh=-,g.
Sh: S I S92 ; iflhg1Vg2 •
Sh:= S92 (S91 I SX(.9 U 92)); if h= 1 UUg 2.

The transition relation can be described in terms of the characteristic functions as follows:

A Sxg(b) sg(W)
XgEeI( f)

The expression S,(V') is represented in SMV by next (Sg). The translator constructs a
formula Sxg = next (S.) for each X g in el-list. These formulas are combined in a TRANS
statement to give the transition relation for the tableau.

TRANS
SXo g'= next (S 9,)) &

SSx 9 2 = next (S, 2)) &

CSX N S next (SN))

Likewise, the translator traverses the parse tree and generates an SMV FAIRNESS con-
straint for each node associated with a formula of form g U h:

'This statement associates a symbol with an SMV expression. When the symbol appears in the program.

it is replaced with the expression.
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FAIRNESS !Sguh I Sh

Finally, the translator generates an SMV SPEC statement. From Theorem 2, it is clear
that the formula E -,f can be checked using the the specification S-., A EG True. Thus,
in order to check the LTL formula A f = -, E -,f, the translator constructs an SMV SPEC
statement for --(S-,f A EG True).

We illustrate the translation procedure by applying it to the simple example in Figure 4.
The result of this procedure is shown in Figure 7. The statements in lines I through 8 come
from the original SMV program, while the statements in lines 9 through 19 are generated by
the tableau construction for a U b. The translation procedure first determines that a, b and
X(a U b) are elementary formulas and causes the state variable EL_X_a_U_b to be declared
for X(aUb) ;-i line 10. Next, the DEFINE statement in lines 12 through 16 is constructed for
the characteristic functions of sat(a), sat(b), sat(X(a U b)), sat(a U b) and sat(-a U b). The
Trans statement in line 17 causes the transition r.-lation for the tableau to be constructed,
and line IS contains the fairness constraint for a U b. Finally, the specification to be checked
is given by the 'SPEC' statement in line 19.

7 Experimental Results

This section describes the experimental results that we obtained for symbolic LTL model
checking. In order to compare the performance of LTL model checking with CTL model
checking, we used two sequential circuit designs whose specifications can be described in
both LTL and CTL,

The first example is a distributed mutual exclusion(DME) circuit designed by Alain
Martin[15]. The DME circuit is a speed-independent token ring, which consists of identical
arbiter cells. A user of the DME circuit obtains exclusive access to the resource via request
and acknowledge signals. We assume aribitrary delay for all gates in the circuit. Each gate is
modeled as a finite-state machine that non-deterministically decides either to recompute its
output or remain unchanged. We verify the correctness of the following two specifications:

1. (Safety) No two users are acknowledged simultaneously.

2. (Liveness) All requests are eventually acknowledged.

The safety specification is given by the formula

AG A -'(ack 2 Aackj),
I<_i<j<n

where ack1 means that user i is acknowledged. This formula is both an LTL formula and a
CTL formula. In the experiments for this specification, infinite delays are allowed at each
gate. In other words, the output value of each gate can remain unchanged forever.

Next, we verify that requests are eventually acknowledged. We only check this speci-
fication with respect to a single user (user 1). In this case the LTL specification has the
form:

AG(req1 - Fack1 )

11



-- Kripke structure

MODULE

MODULE

MODULE main

-- Tableau for f
VAR -- new variables

ELXG. : boolean;

ELXg•2  boolean;

ELXqg boolean;

DEFINE -- characteristic
function

Shp : .. ;

TRANS -- transition relation

( SX 91 = next (Sg,)) &

(SX2 = next (S 92) ) &

(SXC , = next (SgN) )

-- fairness constraints

FAIRNESS !Sg, Uh, I S h

FAIRNESS !Sg;Uh; I Sh2

FAIRNESS !SI!.Jh- [ Sh,

-- new specification

SPEC !(S-f & EG true)

Figure 6: Translator output for SMV program
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I MODULE main -- simple program

2 VAR

3 a: boolean;
4 b: boolean;

5 TRANS C a & !b) -> next(!(a & !b))
6 TRANS (a & b) ->next(a & !b)
7 TRANS (!a & b) -> next(!a & b)

8 TRANS (!a & !b) -> next(!a & b)

9 VAR

10 EL_X_a_U_b : boolean;

11 DEFINE

12 S-a a;
13 S3b :b;

14 S_X_a_U_b :EL_X_aU_b;

15 S_a_U_b : S.b I (S.a & SX-aU_b);
16 SNOT-aU-b :!S_aUb;

17 TRANS S_X_a_U_b = next(S.aU.b)

18 FAIRNESS !S-aU-b I b

19 SPEC !(SNOT-aU-b & EG true)

Figure 7: Translator output for simple SMIV program

This formula is equivalent to the CTL formula:

AG(req, -- AF acki)

If infinite delays are allowed at each gate, these formulas are not true. In order to over-
come this problem we use a fairness constraint which ensures that the output of the gate is
reevaluated infinitely often.

SMV provides several options to perform model checking. We verified the circuit using
the following approach.

"* A single OBDD is constructed for the transition relation of the circuit.

"* The reachable states of the circuit are determined, and evaluation of the CTL operators
is restricted to these states.

13



#cell #nodes #time(sec) trans. #reachable states
CTL LTL CTL LTL CTL LTL CTL LTL

3 11326 11362 17.9 20.5 2778 2781 6579 13158
4 13458 15357 47.5 49.4 4757 4760 75172 150344
5 22321 22348 100.5 104.4 6760 6763 802425 1.60485e+06
6 25869 27318 182.3 193.6 8763 8766 8.2166e+06 1.64332e+07
7 28413 33310 326.4 329.3 10766 10769 8.1784e+07 1.63568e+08
8 44322 44369 509.2 526.3 12769 12772 7.97393e+08 1.59479e+09
9 49702 49755 794.0 794.8 14772 14775 7.65302e+09 1.53060e+.•,,
10 55082 55141 1125.2 1362.7 16775 16778 7.30144e+10 1.46029e+11

Table 1: Safety specification for the DME circuit

#cell #nodes #time(sec) trans. #reachable states
CTL LTL CTL LTL CTL LTL CTL LTL

3 12721 33940 426.1 1260.5 2778 3004 6579 26316
4 26541 72029 2553.2 6096.7 4757 4983 75172 300688
5 47346 120299 9623.1 21950.1 6760 6986 802425 3.2097e+06
6 92080 183043 36995.3 66502.5 8763 8989 8.2166e+06 3.28664e+07
7 163867 263380 97807.1 191990.0 10766 10992 8.1784e+07 3.27136e+08

Table 2: Liveness specification for the DME circuit

9 At each step in the forward search, the transition relation is restricted to the set of
reachable states. The Restrict function of Coudert, Madre and Berthet [11] is used
for this purpose.

Table 1 summarizes the experimental results for the safety specification, and Table 2
summarizes the results for the liveness specification. The columns show the number of the
cells (#cell), the maximum number of OBDD nodes used at any given time (#nodes), the
run time on SPARC station 10 (time), the size of the transition relation in OBDD nodes
(trans.) and the number of the reachable states (#reachable states). In the experiment
for the safety specification, we observe that the number of reachable states for LTL model
checking is twice as large as for CTL model checking. The increase in allocated OBDD nodes
and run time is less than 10%. In the experiment. for the liveness specification, the number
of the reachable states is four times larger for LTL model checking, while the increase in
space and time is 1.5-3 times larger.

The second example is a synchronous bus arbiter which is described in McMillan's the-
sis [16]. This circuit is composed of a daisy chain of identical arbiter cells. The requester
with the highest priority receives an acknowledgement from the arbiter under normal oper-
ation, while a round-robin scheme is applied when the bus traffic becomes very heavy. Each
cell is modeled by a deterministic machine, so the whole arbiter circuit is also a deterministic
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#cell #nodes #time(sec) trans. #reachable states
CTL LTL CTL LTL CTL LTL CTL LTL

3 384 734 0.08 0.1 80 122 384 768
4 654 1279 0.1 0.1 112 218 2048 4096
5 987 1913 0.11 0.15 144 318 10240 20480
6 1383 2628 0.13 0.18 176 418 49152 98304
7 1842 3424 0.16 0.21 208 518 229376 458752
8 2364 4301 0.16 0.26 240 618 1.04858e+06 2.09715e+06
9 2949 5259 0.16 0.33 272 718 4.71859e+06 9.43718e+06
10 3597 6298 0.21 0.33 304 818 2.09715e+07 4.19430e+07
11 4308 7418 0.21 0.41 336 918 9.22747e+07 1.84549e+08
12 5082 8619 0.31 0.45 368 1018 4.02653e+08 8.05306e+08

Table 3: Safety specification for the synchronous arbiter

machine. The specifications in this case are essentially the same as in the case of the DME
circuit discussed previously:

1. (Safety) No two users are acknowledged simultaneously.

2. (Liveness) All requests are eventually acknowledged.

In fact, exactly the same LTL and CTL specifications can be used.
In the experiments using SMV, we used the options to construct single transition rela-

tions, and to compute reachable states before model checking. Table 3 shows the exper-
imental results for the safety specification and Table 4 shows the results for the liveness
specification. For the safety specification we observe that the number of reachable states
for LTL model checking checking is twice as large as for CTL model checking. The number
of the allocated OBDD nodes and run time both increase by a factor of 1.5. In the second
experiment, the number of the reachable states is four times larger for LTL model checking.
The amount of space and time that is required is 1.5-2 times larger.

8 Directions for Future Research

Certainly the most important thing that remains to be done is to try additional examples.
Base4 on the two examples that we have considered in detail so far, it appears that efficient
LTL model checking is possible when the formula that is being checked is not excessively
complicated. This does not mean that LTL will take the place of CTL in model checking
applications. Many other problems, like testing inclusion and equivalence between various
types omega-automata [7], can also be reduced to CTL model checking. LTL, on the other
hand, does not appear to have this flexibility. Moreover, in many of the applications of
model checking to verification, it is important to be able to assert the existance of a path
that satisfies some property. For example, absence of deadlock might be expressed by the
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#cell #nodes #time(sec) trans. #reachable states
CTL LTL CTL LTL CTL LTL CTL LTL

3 996 2159 0.10 0.26 80 134 384 1536
4 1531 3137 0.20 0.36 112 196 2048 8192
5 2155 4254 0.38 0.43 144 258 10240 40960
6 2867 5483 0.43 0.48 176 320 49152 196608
7 3667 6820 0.48 0.61 208 382 229376 917504
8 4555 8266 0.53 0.81 240 444 1.04858e+06 4.1943e+06
9 5531 9821 0.71 1.01 272 506 4.71859e+06 1.88744e+07
10 6595 10000 0.83 1.23 304 568 2.09715e+07 8.38861e+07
11 7747 10001 1.00 1.46 336 630 9.22747e+07 3.69099e+08
12 8987 10052 1.16 1.71 368 692 4.02653e+08 1.61061e+09

Table 4: Liveness specification for the synchronous arbiter

CTL formula AG EF start (Regardless of what state the program enters, there exists a
computation leading back to the start state). Neither this formula nor its negation can be
expressed in LTL [6], so LTL model checking techniques cannot be used to decide whether
the formula is true or not. Idealy, it should be possible to reason about linear-time and
branching-time properties in the same logic (say, CTL* ). We believe this goal can potentially
be realized by extending the techniques discusssed in this paper. Emerson and Lei [13] have
shown how to reduce CTL* model checking to LTL model checking. If the transformation
outlined in this paper can be extended to incorporate their reduction, then it should be
possible to develop a model checker that can handle both types of properties.

Appendix

We prove Theorem 1 and Theorem 2 of Section 5.

Theorem 1 Let T be the tableau for the path formula f. Then, for every Kripke structure
M and every path r' of M, if M, r' • f then there is a path 7r in T that starts in a state in
sat(f), such that label(7r') AAP] = label(r).

In order to prove this theorem, we need the following two lemmas. In the remainder of
this section, 7r' ss ' ... represents a path in M. We denote the suffix of r' starting from
the state sý as i r' = s For the path 7ri, we define si = {f'-O' E el(f) and
M, e ý= 4.,}. Note that si is a state in T.

Lemma 3 For all g E sub(f) U el(f), M, r' ý= g if and only if si E sat(g).

Proof. The proof proceeds by induction on the structure of the formula.

1. Case g E el(f). By the definition of si, it is easy to see that M, r' H g if and only if
g E si. By the definition of sat, g E si if and only if si E sat(g).
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2. Case g = -ga and g = 91 V 92. By the induction hypothesis and the definition of sat.
it is easy to prove these cases.

3. Case g = g1 U 92. By the definition of U, M, ir' • g, U g2 if and only if M, r'
g2 or (M, r' • g9 and M,r• • X(g1 U g2)). By the induction hypothesis and the
definition of si, M, 7r' ý 92 or (Al. ir' ý g, and Al. r' • X(g1 U g2)) if and only
if si E sat(g2) V (si E sat(gl) A s, E sat(X(gi U 92))). By the definition of sat.
s, E sat(g2) V (si E sat(gi) A s, E sat(X(gi U 92))) if and only if s, E sat(g, U g2). 0

Lemma 4 Given r' = s's' ... and s, as above, then 7r = sos 1 ... is a path in T.

Proof. Clearly, for all i, s, E ST. By Lemma 3 and the definition of X, it is easy to see
the following relation: s, E sat(Xg) if and only if M, r', = Xg if and only if Al, r<+l • g
if and only if s,+t E sat(g). By the definition of RT, if s, E sat(Xg) €* s,+t E sat(g), then
(s,,si+i) E RT . Therefore 7r = sos1 ... is a path in T. 0

Proof of Theorem 1. Suppose that, for a path 7' in Ml. r' • f. By Lemma 4. we can find a
path r = sos1 ... in T. By Lemma 3, so E sat(f). By the definition of s,, L(s') I.ap, = LT(S,).
and thus label(n') IAP,= label(7r). This leads to Theorem 1. 0

Theorem 2 M, o" [-- Ef if and only if there is a state o in T such that (a, a') E sat(f) and
P. (o'. o") ý- EG True under the fairness constraints given in (1).

In order to prove this theorem, we need the following three lemmas.

Lemma 5 Given 7r = sOs 1 ... where si is defined as above, then 7r ý= G True under the the
fairness constraints given in (1).

Proof. In order to show that 7r • G True under the fairness constraints, we need to prove
that, for every subformula g U h of f. there are infinitely many states s, on Tr such that
si E sat(-,(g U h) V h). Suppose not. then there exists io such that, for all i > i0 , s,1
sat(--(gUh)Vh). Thus si E sat(gUh) and s, ý sat(h). By Lemma3, for all i > io, 7r' • gUh
and nr V- h. Since ri 1= g U h means 7r' [= h for some j > i, this leads to a contradiction. 0

It is easy to see the next lemma.

Lemma 6 ir" = (so,0s)(s 1,s')... is a path in P with Lp((si,s')) = LT(si) for all I > 0
if and only if there exist a path r = SoS, ... in T. and a path r' = s;s' ... in Al with
LT(s,) = LM(si) I.APf for all i > 0.

Lemma 7 Asuume that, for all k > J, •k E sat(gi) €t* Xk g- 9 and Sk E sat(g2) * 7r = 92.
lf irj V- g1 Ug 2 and s, E sat(gi Ug 2 ), then, for all k > j, Tk K g1 Ug2 and sk E sat(gi Ug 2 ).

Proof. First we prove that, ifsj E sat(g1 Ug2 ) and r, K g1 Ug 2, then sj+l E sat(g, Ug2 ) and
•+l ýL g1 Ug2 . From the definition of sat, sat(g, U 9 2 ) implies sj E sat(g2) or (s, E sat(gi)

and sj E sat(X(gi U 92))). From the assumptions and the definition of RT, it follows that:

7r. ý= g9 or (ir 1= g, and sj+i E sat(g1 U 92)). (2)
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Since rj • g1 U 92 implies ri V 92, (2) leads to the following:

7rj ý= gi and s.+i E sat(g1 U 92). (3)

Since rj 1 g1 from (3) and rj • g1 Ug2 from the assumption, we can also get 7rj+ 1 V g1 Ug2.
Similarly we can get, for all k = j +2,j +3,j +4..., sk E sat(g1 Ug 2) and rk V g1 Ug 2.9

Lemma 8 Let r ý= G True under the fairness constraints, then T, r H f if and only if
so E sat(f).

Proof. By induction on the structure of the formula, we prove, for each g E sub(f) U el(f),
Vj : T, r3 H g if and only if s3 E sat(g).

1. Case g = p E AP. By the definition of s, and the definition of sat, it is easy to see
the following relation: irj H p if and only if p E LT(sj) if and only if p E sj if and only
if sj E sat(p).

2. Case g = -gi and g = 91 V 9 2 . By the induction hyposthesis and the defition of -, and
V, it is easy to prove these cases.

3. Case g = X9g. By the definition of RT and the induction hypothesis, we can see the
following relation: s3 E sat(Xgl) if and only if sj+l E sat(g) if and only if ri+l ý= g if
and only if 7r3 H X g.

4. Case g = 91 U 92. (=>) Assume that rj H g, U g2, then for some 1 >j, 7r = 92 and
for all j _< i < 1, ri H g'. By the induction hypothesis, si E sat(g2) and therefore
sI E sat(g1 U 92). By the definition of RT, it follows that si-1 E sat(X(g1 U 92)).

But ri-. - gi, so, by induction si-i E sat(gi) and therefore st-t E sat(g# U 92). By
induction on (1 - j) we eventually get si E sat(g1 U 92).

(=) Suppose that sj E sat(g1 U 92) and r. V g9 U g2. By Lemma 7, for all k > j.
Sk E sat(g# U 92) and rk K 91 U 92. This implies that ..k ý 92, and thus sk sat(g2)
from the induction hypothesis. Consequently Sk E sat(g1 U 92) and sk g sat(g2)
for all k > j. This leads to a contradiction, because 7r 1= G True guarantees that
there are infinitely many states sk such that sk E sat(-"(g, U g2) V g2 ). Therefore if
s3 E sat(g1 Ug 2 ), then r j  g91 Ug 2. 0

Proof of Theorem 2. (=*) Since M, s' ý= E f, then 3r' ý= f. By Theorem I and Lemma 5,
we can prove, for ir in T, 7r 1= G True and label(r) = label(r') lAP 1 . By Lemma 6, there is a

path 7r" in P such that label(7r") = label(r). Since label(7r) = label(r') lAP, and r' 1= f, we
can see r 1= f . Also since r ý= G True, by Lemma 8 so E sat(f). Thus (So, s') E sat(f).
Since label(r) = label(r") and r [- G True, it is clear that 7r" H G True. Therefore
P, (So, s') 1= EG True.

( 0=) Since (So,s'o) E sat(f) and P,(so,s') H EGTrue, then 37r" G GTrue. By
Lemma 6, there exist paths 7r E T and 7r' E M such that label(rr") = label(7r) = label(r') lAP,.
Since r" = GTrue and label(7r) = label(ir"), we can see 7r = C GTrue. Since (So, s•) E
sat(f), so E sat(f). From Lemma 8, 7r H f. Since label(r) = label(r') lAPp, r' T= f.

Therefore M, s' = E f. 10
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Abstract

We show how LTL model checking can be reduced to CTL model checking with fairness
constraints. Using this reduction, we also describe how to construct a symbolic LTL model

checker that appears to be quite efficient in practice. In particular, we show how the SMV
model checking system developed by McMillan [16] can be extended to permit LTL spec-
ifications. The results that we have obtained are quite surprising. For the examples we

considered, the LTL model checker required at most twice as much time and space as the
CTL model checker. Although additional examples still need to be tried, it appears that
efficient LTL model checking is possible when the specifications are not excessively compli-
cated.
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